Neurology / Neuroscience News

Research Suggests Omega-3 Fatty Acids Could Prevent And Treat Nerve Damage

Research from Queen Mary, University of London suggests that omega-3 fatty acids, which are found in fish oil, have the potential to protect nerves from injury and help them to regenerate.

When nerves are damaged because of an accident or injury, patients experience pain, weakness and muscle paralysis which can leave them disabled, and recovery rates are poor.

The new study, published this week in the Journal of Neuroscience, suggests that omega-3 fatty acids could play a significant role in speeding recovery from nerve injury.

The study focused on peripheral nerve cells. Peripheral nerves are the nerves which transmit signals between the brain and spinal cord, and the rest of the body.

Circadian Rhythm Disruption Causes Neurodegeneration, Early Death

New research at Oregon State University provides evidence for the first time that disruption of circadian rhythms - the biological "clocks" found in many animals - can clearly cause accelerated neurodegeneration, loss of motor function and premature death.

The study was published in Neurobiology of Disease and done by researchers at OSU and Oregon Health and Science University. Prior to this, it wasn't clear which came first - whether the disruption of biological clock mechanisms was the cause or the result of neurodegeneration.

"In these experiments, we showed through both environmental and genetic approaches that disrupting the biological clock accelerated these health problems," said Kuntol Rakshit, an OSU graduate fellow.

Clues To Causes Of Nerve Cell Degeneration Provided By Spasticity Gene Finding

The discovery of a gene that causes a form of hereditary spastic paraplegia (HSP) may provide scientists with an important insight into what causes axons, the stems of our nerve cells, to degenerate in conditions such as multiple sclerosis.

In the Journal of Clinical Investigation, an international team of scientists led by Dr Evan Reid at the University of Cambridge, and Dr Stephan Zuchner from the University of Miami, report that mutations in the gene known as 'reticulon 2' on chromosome 19 cause a form of HSP, a condition characterised by progressive stiffness and contraction (spasticity) of the legs, caused by selective and specific degeneration of axons


Syndicate content