Multiple Sclerosis News

Clues To Causes Of Nerve Cell Degeneration Provided By Spasticity Gene Finding

The discovery of a gene that causes a form of hereditary spastic paraplegia (HSP) may provide scientists with an important insight into what causes axons, the stems of our nerve cells, to degenerate in conditions such as multiple sclerosis.

In the Journal of Clinical Investigation, an international team of scientists led by Dr Evan Reid at the University of Cambridge, and Dr Stephan Zuchner from the University of Miami, report that mutations in the gene known as 'reticulon 2' on chromosome 19 cause a form of HSP, a condition characterised by progressive stiffness and contraction (spasticity) of the legs, caused by selective and specific degeneration of axons

Study Suggests Potential For Reversing Age-Associated Effects In Multiple Sclerosis Patients

New research highlights the possibility of reversing ageing in the central nervous system for multiple sclerosis (MS) patients. The study is published in the journal Cell Stem Cell.

As we get older, our bodies' ability to regenerate decreases. This is not only true for our skin (which is evident in the wrinkles that develop as we age) but also true for other tissues in the body, including the regenerative processes in the brain. For diseases which often span several decades and are affected by regenerative processes, such as multiple sclerosis, this can have massive implications.

Research Proving Link Between Virus And MS Could Point The Way To Treatment And Prevention

A new study from researchers at Queen Mary, University of London shows how a particular virus tricks the immune system into triggering inflammation and nerve cell damage in the brain, which is known to cause MS.

Previous research has suggested a link between the Epstein-Barr virus (EBV) and multiple sclerosis but the research has remained controversial since scientists have so far failed to substantiate the link.

The new study proves the virus is involved in a manner more sophisticated and subtle than previously imagined, and may offer new ways to treat or prevent the disease.


Syndicate content